837 research outputs found

    "Gestresste" Mitochondrien werden isoliert : ein Protein schlägt die Brücke zwischen Qualitätskontrolle und Dynamik

    Get PDF
    Mitochondrien sind die Kraftwerke unserer Zellen. In ihnen findet die Zellatmung statt, die unseren Körper mit lebenswichtiger Energie versorgt. Zusätzlich teilen sich die Zellorganellen und verschmelzen wieder miteinander im Minutentakt. Was aber passiert, wenn Teile dieses dynamischen Geflechts Defekte aufweisen? Die Antwort dazu könnte ein Protein sein, das auf zwei verschiedene Weisen in die Mitochondrien-Membranen eingebaut wird. Liegt keine kurze Form des Proteins vor, ist das ein Hinweis dafür, dass die Organellen defekt sind. Die Mitochondrien verbrennen die mit der Nahrung zugeführten Kohlenhydrate und Fette unter Verbrauch von Sauerstoff zu Kohlendioxid und Wasser. Bei diesem Vorgang, der Zellatmung, wird über eine Reihe von Proteinkomplexen ein elektrochemisches Potenzial aufgebaut, das zur Produktion des Energieträgers ATP (Adenosintriphosphat) genutzt wird. ATP kann aus den Mitochondrien abtransportiert werden und steht somit als eine Art Treibstoff für alle Stoffwechselprozesse zur Verfügung. Die Arbeit der Mitochondrien ist der Hauptgrund für unseren täglichen Sauerstoffbedarf. Außerdem tragen die Nano-Kraftwerke der Zelle dazu bei, unsere Körpertemperatur auf 37 °C aufrechtzuerhalten. Aufgrund dieser zentralen Funktionen ist es nicht verwunderlich, dass eine Reihe von Krankheiten beim Menschen durch den Funktionsverlust von Mitochondrien verursacht oder beeinflusst wird. Das sind in erster Linie neurologische oder muskuläre Erkrankungen, aber auch Diabetes, Fettleibigkeit, verschiedene Formen von Krebs und Alterungsprozesse. Folglich ist es von immenser Bedeutung zu verstehen, wie Mitochondrien funktionieren, wie sie ihre Funktionalität aufrechterhalten und gegebenenfalls repariert oder entsorgt werden können. Dem können wir am Wissenschaftsstandort Frankfurt hervorragend nachgehen, da sich einige international ausgewiesene Forschungsgruppen in den Fachbereichen Medizin, Biologie, Chemie und am Max-Planck-Institut für Biophysik mit verschiedenen Aspekten der mitochondrialen Biologie befassen. In zahlreichen interdisziplinären Kooperationen wird so versucht, dieses komplexe System besser zu verstehen

    Emergence of the mitochondrial reticulum from fission and fusion dynamics

    Get PDF
    Mitochondria form a dynamic tubular reticulum within eukaryotic cells. Currently, quantitative understanding of its morphological characteristics is largely absent, despite major progress in deciphering the molecular fission and fusion machineries shaping its structure. Here we address the principles of formation and the large-scale organization of the cell-wide network of mitochondria. On the basis of experimentally determined structural features we establish the tip-to-tip and tip-to-side fission and fusion events as dominant reactions in the motility of this organelle. Subsequently, we introduce a graph-based model of the chondriome able to encompass its inherent variability in a single framework. Using both mean-field deterministic and explicit stochastic mathematical methods we establish a relationship between the chondriome structural network characteristics and underlying kinetic rate parameters. The computational analysis indicates that mitochondrial networks exhibit a percolation threshold. Intrinsic morphological instability of the mitochondrial reticulum resulting from its vicinity to the percolation transition is proposed as a novel mechanism that can be utilized by cells for optimizing their functional competence via dynamic remodeling of the chondriome. The detailed size distribution of the network components predicted by the dynamic graph representation introduces a relationship between chondriome characteristics and cell function. It forms a basis for understanding the architecture of mitochondria as a cell-wide but inhomogeneous organelle. Analysis of the reticulum adaptive configuration offers a direct clarification for its impact on numerous physiological processes strongly dependent on mitochondrial dynamics and organization, such as efficiency of cellular metabolism, tissue differentiation and aging

    Dynamic subcompartmentalization of the mitochondrial inner membrane

    Get PDF
    The inner membrane of mitochondria is organized in two morphologically distinct domains, the inner boundary membrane (IBM) and the cristae membrane (CM), which are connected by narrow, tubular cristae junctions. The protein composition of these domains, their dynamics, and their biogenesis and maintenance are poorly understood at the molecular level. We have used quantitative immunoelectron microscopy to determine the distribution of a collection of representative proteins in yeast mitochondria belonging to seven major processes: oxidative phosphorylation, protein translocation, metabolite exchange, mitochondrial morphology, protein translation, iron–sulfur biogenesis, and protein degradation. We show that proteins are distributed in an uneven, yet not exclusive, manner between IBM and CM. The individual distributions reflect the physiological functions of proteins. Moreover, proteins can redistribute between the domains upon changes of the physiological state of the cell. Impairing assembly of complex III affects the distribution of partially assembled subunits. We propose a model for the generation of this dynamic subcompartmentalization of the mitochondrial inner membrane

    TIM23-mediated insertion of transmembrane alpha-helices into the mitochondrial inner membrane

    Get PDF
    While overall hydrophobicity is generally recognized as the main characteristic of transmembrane (TM) alpha-helices, the only membrane system for which there are detailed quantitative data on how different amino acids contribute to the overall efficiency of membrane insertion is the endoplasmic reticulum (ER) of eukaryotic cells. Here, we provide comparable data for TIM23-mediated membrane protein insertion into the inner mitochondrial membrane of yeast cells. We find that hydrophobicity and the location of polar and aromatic residues are strong determinants of membrane insertion. These results parallel what has been found previously for the ER. However, we see striking differences between the effects elicited by charged residues flanking the TM segments when comparing the mitochondrial inner membrane and the ER, pointing to an unanticipated difference between the two insertion systems. Keywords: CoxVa , membrane protein , Mgm1p , mitochondria , TIM2

    Mrpl36 is important for generation of assembly competent proteins during mitochondrial translation

    Get PDF
    The complexes of the respiratory chain represent mosaics of nuclear and mitochondrially encoded components. The processes by which synthesis and assembly of the various subunits are coordinated remain largely elusive. During evolution, many proteins of the mitochondrial ribosome acquired additional domains pointing at specific properties or functions of the translation machinery in mitochondria. Here, we analyzed the function of Mrpl36, a protein associated with the large subunit of the mitochondrial ribosome. This protein, homologous to the ribosomal protein L31 from bacteria, contains a mitochondria-specific C-terminal domain that is not required for protein synthesis per se; however, its absence decreases stability of Mrpl36. Cells lacking this C-terminal domain can still synthesize proteins, but these translation products fail to be properly assembled into respiratory chain complexes and are rapidly degraded. Surprisingly, overexpression of Mrpl36 seems to even increase the efficiency of mitochondrial translation. Our data suggest that Mrpl36 plays a critical role during translation that determines the rate of respiratory chain assembly. This important function seems to be carried out by a stabilizing activity of Mrpl36 on the interaction between large and small ribosomal subunits, which could influence accuracy of protein synthesis

    The C-terminal domain of Fcj1 is required for formation of crista junctions and interacts with the TOB/SAM complex in mitochondria

    Get PDF
    Crista junctions (CJs) are tubular invaginations of the inner membrane of mitochondria that connect the inner boundary with the cristae membrane. These architectural elements are critical for mitochondrial function. The yeast inner membrane protein Fcj1, called mitofilin in mammals, was reported to be preferentially located at CJs and crucial for their formation. Here we investigate the functional roles of individual domains of Fcj1. The most conserved part of Fcj1, the C-terminal domain, is essential for Fcj1 function. In its absence, formation of CJ is strongly impaired and irregular, and stacked cristae are present. This domain interacts with full-length Fcj1, suggesting a role in oligomer formation. It also interacts with Tob55 of the translocase of outer membrane β-barrel proteins (TOB)/sorting and assembly machinery (SAM) complex, which is required for the insertion of β-barrel proteins into the outer membrane. The association of the TOB/SAM complex with contact sites depends on the presence of Fcj1. The biogenesis of β-barrel proteins is not significantly affected in the absence of Fcj1. However, down-regulation of the TOB/SAM complex leads to altered cristae morphology and a moderate reduction in the number of CJs. We propose that the C-terminal domain of Fcj1 is critical for the interaction of Fcj1 with the TOB/SAM complex and thereby for stabilizing CJs in close proximity to the outer membrane. These results assign novel functions to both the C-terminal domain of Fcj1 and the TOB/SAM complex

    The mycotoxin phomoxanthone A disturbs the form and function of the inner mitochondrial membrane.

    Get PDF
    Mitochondria are cellular organelles with crucial functions in the generation and distribution of ATP, the buffering of cytosolic Ca2+ and the initiation of apoptosis. Compounds that interfere with these functions are termed mitochondrial toxins, many of which are derived from microbes, such as antimycin A, oligomycin A, and ionomycin. Here, we identify the mycotoxin phomoxanthone A (PXA), derived from the endophytic fungus Phomopsis longicolla, as a mitochondrial toxin. We show that PXA elicits a strong release of Ca2+ from the mitochondria but not from the ER. In addition, PXA depolarises the mitochondria similarly to protonophoric uncouplers such as CCCP, yet unlike these, it does not increase but rather inhibits cellular respiration and electron transport chain activity. The respiration-dependent mitochondrial network structure rapidly collapses into fragments upon PXA treatment. Surprisingly, this fragmentation is independent from the canonical mitochondrial fission and fusion mediators DRP1 and OPA1, and exclusively affects the inner mitochondrial membrane, leading to cristae disruption, release of pro-apoptotic proteins, and apoptosis. Taken together, our results suggest that PXA is a mitochondrial toxin with a novel mode of action that might prove a useful tool for the study of mitochondrial ion homoeostasis and membrane dynamics

    Assessing affect in adolescents with e-diaries: multilevel confirmatory factor analyses of different factor models

    Get PDF
    In the last two decades, e-diary studies have gained increasing interest, with a dominant focus on mood and affect. Although requested in current guidelines, psychometric properties are rarely reported, and methodological investigations of factor structure, model fit, and the reliability of mood and affect assessment are limited. We used a seven-day e-diary dataset of 189 adolescent participants (12–17  years). The e-diary affect assessments revealed a considerable portion of within-person variance. The six-factor model showed the best model fit compared to the less complex models. Factor loadings also improved with the complexity of the models. Accordingly, we recommend that future e-diary studies of adolescents use the six-factor model of affect as well as reporting psychometric properties and model fit. For future e-diary scale development, we recommend using a minimum of three items per scale to enable the use of confirmatory multilevel factor analyses

    Mitochondrial targeting adaptation of the hominoid-specific glutamate dehydrogenase driven by positive Darwinian selection

    Get PDF
    Many new gene copies emerged by gene duplication in hominoids, but little is known with respect to their functional evolution. Glutamate dehydrogenase (GLUD) is an enzyme central to the glutamate and energy metabolism of the cell. In addition to the single, GLUD-encoding gene present in all mammals (GLUD1), humans and apes acquired a second GLUD gene (GLUD2) through retroduplication of GLUD1, which codes for an enzyme with unique, potentially brain-adapted properties. Here we show that whereas the GLUD1 parental protein localizes to mitochondria and the cytoplasm, GLUD2 is specifically targeted to mitochondria. Using evolutionary analysis and resurrected ancestral protein variants, we demonstrate that the enhanced mitochondrial targeting specificity of GLUD2 is due to a single positively selected glutamic acid-to-lysine substitution, which was fixed in the N-terminal mitochondrial targeting sequence (MTS) of GLUD2 soon after the duplication event in the hominoid ancestor ~18–25 million years ago. This MTS substitution arose in parallel with two crucial adaptive amino acid changes in the enzyme and likely contributed to the functional adaptation of GLUD2 to the glutamate metabolism of the hominoid brain and other tissues. We suggest that rapid, selectively driven subcellular adaptation, as exemplified by GLUD2, represents a common route underlying the emergence of new gene functions

    Formation of cristae and crista junctions in mitochondria depends on antagonism between Fcj1 and Su e/g

    Get PDF
    Crista junctions (CJs) are important for mitochondrial organization and function, but the molecular basis of their formation and architecture is obscure. We have identified and characterized a mitochondrial membrane protein in yeast, Fcj1 (formation of CJ protein 1), which is specifically enriched in CJs. Cells lacking Fcj1 lack CJs, exhibit concentric stacks of inner membrane in the mitochondrial matrix, and show increased levels of F1FO–ATP synthase (F1FO) supercomplexes. Overexpression of Fcj1 leads to increased CJ formation, branching of cristae, enlargement of CJ diameter, and reduced levels of F1FO supercomplexes. Impairment of F1FO oligomer formation by deletion of its subunits e/g (Su e/g) causes CJ diameter enlargement and reduction of cristae tip numbers and promotes cristae branching. Fcj1 and Su e/g genetically interact. We propose a model in which the antagonism between Fcj1 and Su e/g locally modulates the F1FO oligomeric state, thereby controlling membrane curvature of cristae to generate CJs and cristae tips
    corecore